Adding a certain compound to certain chemical reactions, such as: 54221-95-3, 2-Acetylaminoisonicotinic acid, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Product Details of 54221-95-3, blongs to pyridine-derivatives compound. Product Details of 54221-95-3
A mixture of (-)-1-(6-(2,2,2-trifluoroethoxy)pyridin-3-yl)ethanamine hydrochloride (1.50 g, 5.12 mmol, Amine-1, single enantiomer), 2-acetamidoisonicotinic acid (1.01 g, 5.63 mmol), HBTU (2.33 g, 6.14 mmol) and triethylamine (3.57 mL, 25.6 mmol) in dichloromethane (51 mL) is stirred at room temperature for 15 hours. The reaction mixture is poured into water (50 mL) and extracted with dichloromethane (50 mL). The organic layer is dried over sodium sulfate and concentrated under reduced pressure. The residue is recrystallized from ethyl acetate to give 1.30 g (66percent yield) of the title compound as a white solid.1H-NMR (300 MHz, DMSO-d6) delta 10.6 (1H, s), 9.08 (1H, d, J = 8.1 Hz), 8.41-8.38 (2H, m), 8.18 (1H, d, J = 2.2 Hz), 7.82 (1H, dd, J = 8.4, 2.2 Hz), 7.43 (1H, d, J = 5.1 Hz), 6.96 (1H, d, J = 8.8 Hz), 5.14 (1H, m), 4.96 (2H, q, J = 9.2 Hz), 2.09 (3H, s), 1.47 (3H, d, J = 7.0 Hz), MS (ESI) m/z: 383 (M+H)+
At the same time, in my other blogs, there are other synthetic methods of this type of compound,54221-95-3, 2-Acetylaminoisonicotinic acid, and friends who are interested can also refer to it.
Reference:
Patent; RAQUALIA PHARMA INC.; YAMAGISHI, Tatsuya; KAWAMURA, Kiyoshi; ARANO, Yoshimasa; MORITA, Mikio; WO2012/53186; (2012); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem