Application of 19346-43-1 ,Some common heterocyclic compound, 19346-43-1, molecular formula is C6H5FN2O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc., below Introduce a new synthetic route.
General procedure: The dimethyl derivatives (4,4?, 5,5? or 6,6?) of 3,3?-dinitro-2,2?-azobipyridine were synthesized from the respective hydrazo-derivatives obtained previously from 3-nitro-4(or 5 or 6)-methyl-2-hydrazine-pyridine, respectively. Syntheses of these hydrazo derivatives were very similar to the synthesis of 3,3?-dinitro-2,2?-hydrazobipyridine. Instead of ethanol n-propanol was used and its mixtures were heated at boiling temperature for 30 min in the water bath. 2.52 g (0.015 mol) of 3-nitro-4(or 5 or 6)-methyl-2-hydrazine-pyridine were used to synthesis. The synthesized red-brown needle-like crystals of 4,4?-dimethyl-3,3?-dinitro-2,2?-hydrazobipyridine melt with decomposition at 255C. The yield was 53.1%. The synthesized brown needle-like crystals of 5,5?-dimethyl-3,3?-dinitro-2,2?-hydrazobipyridine melt with decomposition at 285C. The yield was 54.0%. The synthesized dark-brown needle-like crystals of 6,6?-dimethyl-3,3?-dinitro-2,2?-hydrazobipyridine melt with decomposition at 275C. The yield was 51.0%. 1 g of the obtained in this way 4,4?(or 5,5? or 6,6?)-3,3?-dinitro-2,2?-hydrazobipyridine was used to obtain respective azo derivatives in the same way as 3NAP. The synthesized orange needle-like crystals of 4,4?-dimethyl-3,3?-dinitro-2,2?-azobipyridine (4M3NAP) melt with decomposition at 260C. The yield was 74.2%. The synthesized orange needle-like crystals of 5,5?-dimethyl-3,3?-dinitro-2,2?-azobipyridine (5M3NAP) melt with decomposition at 256C. The yield was 77.1%. The synthesized orange powder of 6,6?-dimethyl-3,3?-dinitro-2,2?-azobipyridine (6M3NAP) melt with decomposition at 206C. The yield was 80.3% [51,52,54].
These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,19346-43-1, its application will become more common.
Reference:
Article; Kucharska; Hanuza; Lorenc; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 127; (2014); p. 370 – 380;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem