Some tips on (E)-3-(6-Aminopyridin-3-yl)acrylic acid

With the rapid development of chemical substances, we look forward to future research findings about 167837-43-6.

The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 167837-43-6, name is (E)-3-(6-Aminopyridin-3-yl)acrylic acid. This compound has unique chemical properties. The synthetic route is as follows. Quality Control of (E)-3-(6-Aminopyridin-3-yl)acrylic acid

(1) To methanol (5 ml) in dry ice-acetone bath was added thionyl chloride (0.41 ml) dropwise over 5 minutes. After (E)-3-(6-Aminopyridin-3-yl)acrylic acid (700 mg) was added to the mixture, the reaction mixture was heated at reflux for 1 hour, and the solvent was removed under reduced pressure. The reaction mixture was adjusted to pH 8 with saturated sodium bicarbonate aqueous solution and extracted with dichloromethane. The organic layer was washed with water and brine, dried over magnesium sulfate and evaporated in vacuo. The precipitate was collected by vacuum filtration and washed with isopropyl ether to give methyl (E)-3-(6-aminopyridin-3-yl)acrylate (725 mg) as a solid. mp: 173-175 C. NMR (DMSO-d6, delta): 3.67 (3H, s), 6.32 (1H, d, J=16 Hz), 6.45 (1H, d, J=8 Hz), 6.57 (2H, s), 7.51 (1H, d, J=16 Hz), 7.79 (1H, dd, J=2, 8 Hz), 8.15 (1H, d, J=2 Hz).

With the rapid development of chemical substances, we look forward to future research findings about 167837-43-6.

Reference:
Patent; Fujisawa Pharmaceutical Co., Ltd.; US5994368; (1999); A;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem