Reference of 108-99-6, With the rapid development and complex challenges of chemical substances, the synthesis of new drugs is usually one of the most effective ways to increase yield.108-99-6, name is 3-Methylpyridine, molecular formula is C6H7N, molecular weight is 93.13, as common compound, the synthetic route is as follows.
Example 7 The preparation of the catalyst of the present invention and the process for preparing nicotinic acid by using the catalyst 6.43 g of ammonium meta-vanadate were added into 500 ml water and the solution was heated at 70C to dissolve ammonium meta-vanadate. Then, 8.2 g of zinc sulfate were added into the solution and stirred for 30 minutes. Into the resultant solution were added 92.68 g titanium oxide (Hembitec K-03) and stirred for 1 hour. The mixture was heated to evaporate water and then calcined in an oven at a temperature of 600C to obtain the catalyst of the present invention, whose composition was shown in Table 1. After calcination, the catalyst was observed by electronic microscopy and found that the crystal size of the active ingredients on the surface of the carrier is from 40 to 60 nm. Subsequently, 30g of the prepared catalyst were fed into a tube reactor having a diameter of 1 inch and a length of 5 centimeter to obtain a catalyst bed. 3-Methylpyridine was first mixed with air and then with H2O vapor and then continuously fed into the catalyst bed at a mole ratio of 1:30:70 (3-methylpyridine: oxygen: H2O) and where the bed temperature was controlled at 320C . The feed speed of 3-methylpyridine is 0.025 hr-1. The product was collected at the outlet of the catalyst bed and analyzed by HPLC and GC. It was found that a conversion of 3-methylpyridine is 88.10%, a selectivity of nicotinic acid is 88.32%, and a selectivity of carbon dioxide is 9.25%.
The chemical industry reduces the impact on the environment during synthesis 108-99-6, I believe this compound will play a more active role in future production and life.
Reference:
Patent; Chang Chun Petrochemical Co. Ltd.; EP1584618; (2005); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem