Karges, Johannes’s team published research in European Journal of Inorganic Chemistry in 2019 | CAS: 1134-35-6

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Quality Control of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Quality Control of 4,4′-Dimethyl-2,2′-bipyridineIn 2019 ,《Towards Long Wavelength Absorbing Photodynamic Therapy Photosensitizers via the Extension of a [Ru(bipy)3]2+ Core》 appeared in European Journal of Inorganic Chemistry. The author of the article were Karges, Johannes; Blacque, Olivier; Goldner, Philippe; Chao, Hui; Gasser, Gilles. The article conveys some information:

Complementary to classical treatment methods used against cancer, photodynamic therapy (PDT) has received increasing attention over the last years. PDT relies on the generation of reactive oxygen species (ROS) upon light irradiation to trigger cell death. As the wavelength employed during such treatments directly influences the light penetration depth and therefore the possibility to treat deep seated tumors or large tumors, research efforts have been made towards the development of photosensitizers (PSs) with an absorption in the phototherapeutic window (600-900 nm). To tackle this drawback, we report herein the preparation and characterization of new RuII-containing PDT PSs, that are based on a [Ru(bipy)3]2+ core (1; bipy: 2,2′-bipyridine) and that are extended with Me groups (2) or vinyl dimethylamino groups (3). As anticipated with our design, we found a red-shift of 65 nm of the maximum absorption of complex 3 in comparison to complex 1. In addition, we report on the in-depth photophys. properties as well as (photo-)cytotoxicity against cervical cancerous HeLa cells of the investigated compounds In addition to this study using 4,4′-Dimethyl-2,2′-bipyridine, there are many other studies that have used 4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6Quality Control of 4,4′-Dimethyl-2,2′-bipyridine) was used in this study.

4,4′-Dimethyl-2,2′-bipyridine(cas: 1134-35-6) is used in the synthesis of a series of o-phenanthroline-substituted ruthenium(II) complexes.Quality Control of 4,4′-Dimethyl-2,2′-bipyridine Furthermore, 4,4′-Dimethyl-2,2′-bipyridine is used as a chemical Intermediate. It can be used for the determination of ferrous and cyanide compounds.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Senthilkumaran, Marimuthu’s team published research in Materials Chemistry and Physics in 2020 | CAS: 141-86-6

2,6-Diaminopyridine(cas: 141-86-6) belongs to pyridine. Pyridine and its simple derivatives are stable and relatively unreactive liquids, with strong penetrating odours that are unpleasant.Recommanded Product: 141-86-6

Recommanded Product: 141-86-6In 2020 ,《Poly(s-triazine) based porous carbon for CO2 sequestration》 appeared in Materials Chemistry and Physics. The author of the article were Senthilkumaran, Marimuthu; Saravanan, Chokalingam; Puthiaraj, Pillaiyar; Rameshkumar, Perumal; Kalaignan, Guruviah Paruthimal; Muthu Mareeswaran, Paulpandian. The article conveys some information:

Nitrogen containing microporous materials are promising candidates for the efficient and selective CO2 capture. Triazine containing polyaminals are the potential precursors for the preparation of porous carbons. The various nitrogen moieties present in the materials are examined by XPS anal. The FE-SEM and HR-TEM images of the materials and N2 sorption profile exhibit abundant microporous structure. Pore size distribution reveals the existence of narrow micropores in the materials. The prepared materials exhibit surface area up to 684 m2/g, microporous surface area up to 441 m2/g and CO2 capture up to 154 mg/g. CO2 isotherm data is well fitted with Langmuir and Freundlich isotherm models. Spontaneity of the CO2 adsorption process are demonstrated by thermodn. parameters. The high CO2/N2 selectivity and considerable CO2/CH4 selectivity of the materials are calculated by initial slope method (Henry′s law). The experimental part of the paper was very detailed, including the reaction process of 2,6-Diaminopyridine(cas: 141-86-6Recommanded Product: 141-86-6)

2,6-Diaminopyridine(cas: 141-86-6) belongs to pyridine. Pyridine and its simple derivatives are stable and relatively unreactive liquids, with strong penetrating odours that are unpleasant.Recommanded Product: 141-86-6

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Colgan, Avene C.’s team published research in Angewandte Chemie, International Edition in 2022 | CAS: 103-74-2

2-(2-Hydroxyethyl)pyridine(cas: 103-74-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. Electric Literature of C7H9NO

In 2022,Colgan, Avene C.; Proctor, Rupert S. J.; Gibson, David C.; Chuentragool, Padon; Lahdenpera, Antti S. K.; Ermanis, Kristaps; Phipps, Robert J. published an article in Angewandte Chemie, International Edition. The title of the article was 《Hydrogen Atom Transfer Driven Enantioselective Minisci Reaction of Alcohols》.Electric Literature of C7H9NO The author mentioned the following in the article:

Catalytic enantioselective Minisci reactions have recently been developed but all instances so far utilize α-amino radical coupling partners. Authors report a substantial evolution of the enantioselective Minisci reaction that enables α-hydroxy radicals to be used, providing valuable enantioenriched secondary alc. products. This is achieved through the direct oxidative coupling of two C-H bonds on simple alc. and pyridine partners through a hydrogen atom transfer (HAT)-driven approach: a challenging process to achieve due to the numerous side reactions that can occur. This approach is highly regioselective as well as highly enantioselective. Dicumyl peroxide, upon irradiation with 390 nm light, serves as both HAT reagent and oxidant while selectivity is controlled by use of a chiral phosphoric acid catalyst. Computational and exptl. evidence provide mechanistic insight as to the origin of selectivity, revealing a stereodetermining deprotonation step distinct from the analogous reaction of amide-containing substrates. The experimental part of the paper was very detailed, including the reaction process of 2-(2-Hydroxyethyl)pyridine(cas: 103-74-2Electric Literature of C7H9NO)

2-(2-Hydroxyethyl)pyridine(cas: 103-74-2) belongs to pyridine. Pyridines form stable salts with strong acids. Pyridine itself is often used to neutralize acid formed in a reaction and as a basic solvent. Electric Literature of C7H9NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Manley, Paul W.’s team published research in Bioorganic & Medicinal Chemistry Letters in 2022 | CAS: 1692-25-7

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Computed Properties of C5H6BNO2

In 2022,Manley, Paul W.; Huth, Felix; Moussaoui, Saliha; Schoepfer, Joseph published an article in Bioorganic & Medicinal Chemistry Letters. The title of the article was 《A kinase inhibitor which specifically targets the ABL myristate pocket (STAMP), but unlike asciminib crosses the blood-brain barrier》.Computed Properties of C5H6BNO2 The author mentioned the following in the article:

The ubiquitously expressed ABL1 and ABL2 protein kinases play many important roles in cell function. Although they have been implicated in neuron development, maintenance and signaling, there are no good tool compounds to evaluate the effects of ABL kinase inhibition in the brain. Asciminib is a recently approved drug that specifically and potently inhibits the tyrosine kinase activity of ABL1, ABL2 and that of the chimeric BCR-ABL1 oncoprotein which causes chronic myeloid leukemia. Herein we show that asciminib does not penetrate the intact blood-brain barrier (BBB) following administration to rats, which curtails its utility for assessing the in vivo effects of ABL kinase inhibition in the brain. However, we describe another specific ABL kinase inhibitor, possessing physicochem. characteristics suitable for BBB penetration, and which after administration (either i.v., i.p. or p.o.) to mice achieves substantial, pharmacol. relevant brain concentrations This bipyridine compound (4) therefore has potential for elucidating the role of ABL kinases in the brain in non-clin. studies. In the part of experimental materials, we found many familiar compounds, such as Pyridin-3-ylboronic acid(cas: 1692-25-7Computed Properties of C5H6BNO2)

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Computed Properties of C5H6BNO2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Ovchenkova, Ekaterina N.’s team published research in Journal of Physical Chemistry A in 2021 | CAS: 1539-42-0

Bis(pyridin-2-ylmethyl)amine(cas: 1539-42-0) is a secondary amine with two picolyl substituents. The compound is a tridentate ligand in coordination chemistry and commonly used to produce Zn-based chemosensors/probes, such as Zinpry.Related Products of 1539-42-0

Ovchenkova, Ekaterina N.; Tsaturyan, Arshak A.; Bichan, Nataliya G.; Lomova, Tatyana N. published an article in 2021. The article was titled 《N Basicity of Substituted Fullero[60]/[70]pyrrolidines According to DFT/TD-DFT Calculations and Chemical Thermodynamics》, and you may find the article in Journal of Physical Chemistry A.Related Products of 1539-42-0 The information in the text is summarized as follows:

The basicity thermodn. parameters of pyridyl/imidazole-substituted fullero[60]/[70]pyrrolidines with respect to N heteroatoms in dichloromethane, which are necessary both to deepen insight into aromaticity “”neque levia”” and to create supramol. chem. structures for application, are obtained and discussed in this work. Because of the presence of a chromophore in the mols., the acid-base reactions of three C60 derivatives functionalized in different ways and one C70 derivative are studied using spectrophotometric titration with trifluoroacetic acid. The dependence of the pK values determined using the data on Hammett′s acidity functions, H0, for a binary nonaqueous solvent on the mol.′s chem. structure is shown. D. functional theory (DFT) and time-dependent DFT (TD-DFT) at the B3LYP/6-311G(d,p) level were used for the optimization of the fullerene derivative structures and modeling of their UV-vis spectra. The pKBH+ values of substituted fullero[60]/[70]pyrrolidines are predicted by quantum-chem. calculations After reading the article, we found that the author used Bis(pyridin-2-ylmethyl)amine(cas: 1539-42-0Related Products of 1539-42-0)

Bis(pyridin-2-ylmethyl)amine(cas: 1539-42-0) is a secondary amine with two picolyl substituents. The compound is a tridentate ligand in coordination chemistry and commonly used to produce Zn-based chemosensors/probes, such as Zinpry.Related Products of 1539-42-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Rajesh, Sarigama’s team published research in Journal of Colloid and Interface Science in 2021 | CAS: 103-74-2

2-(2-Hydroxyethyl)pyridine(cas: 103-74-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Recommanded Product: 2-(2-Hydroxyethyl)pyridine

Rajesh, Sarigama; Zhai, Jiali; Drummond, Calum J.; Tran, Nhiem published an article in 2021. The article was titled 《Synthetic ionizable aminolipids induce a pH dependent inverse hexagonal to bicontinuous cubic lyotropic liquid crystalline phase transition in monoolein nanoparticles》, and you may find the article in Journal of Colloid and Interface Science.Recommanded Product: 2-(2-Hydroxyethyl)pyridine The information in the text is summarized as follows:

A prospective class of materials for drug delivery is lyotropic liquid crystalline (LLC) nanoparticles, such as cubosomes and hexosomes. Efforts are being made to generate a pH dependent system, which exhibits slow release hexosomes (H2) at physiol. pH and relatively fast release cubosomes (Q2) at acidic disease sites such as in various cancers and bacterial infection (pH ∼ 5.5-6.5). Herein, we report the synthesis of nine ionizable aminolipids, which were doped into monoolein (MO) lipid nanoparticles. Using high throughput formulation and synchrotron small angle X-ray scattering (SAXS), the effects of aminolipid structure and concentration on the mesophase of MO nanoparticles at various pHs were determined As the pH changed from neutral to acidic, mesophases, could be formed in an order L2 (inverse micelles) → H2 → Q2. Specifically, systems with heterocyclic oleates exhibited the H2 to Q2 transition at pH 5.5-6.5. Furthermore, the phase transition pH could be fine-tuned by incorporating two aminolipids into the nanoparticles. Nanoparticles with a pH dependent phase transition as described in this study may be useful as drug delivery carriers for the treatment of cancers and certain bacterial infection. In the experiment, the researchers used many compounds, for example, 2-(2-Hydroxyethyl)pyridine(cas: 103-74-2Recommanded Product: 2-(2-Hydroxyethyl)pyridine)

2-(2-Hydroxyethyl)pyridine(cas: 103-74-2) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Recommanded Product: 2-(2-Hydroxyethyl)pyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Wagener, Tobias’s team published research in Angewandte Chemie, International Edition in 2021 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Name: 2-Bromo-5-methylpyridine

Wagener, Tobias; Lueckemeier, Lukas; Daniliuc, Constantin G.; Glorius, Frank published their research in Angewandte Chemie, International Edition in 2021. The article was titled 《Interrupted pyridine hydrogenation: Asymmetric synthesis of δ-lactams》.Name: 2-Bromo-5-methylpyridine The article contains the following contents:

Metal-catalyzed hydrogenation is an effective method to transform readily available arenes into saturated motifs, however, current hydrogenation strategies are limited to the formation of C-H and N-H bonds. The stepwise addition of hydrogen yields reactive unsaturated intermediates that are rapidly reduced. In contrast, the interruption of complete hydrogenation by further functionalization of unsaturated intermediates offers great potential for increasing chem. complexity in a single reaction step. Overcoming the tenet of full reduction in arene hydrogenation has been seldom demonstrated. In this work the authors report the synthesis of sought-after, enantioenriched δ-lactams from oxazolidinone-substituted pyridines and water by an interrupted hydrogenation mechanism. The experimental process involved the reaction of 2-Bromo-5-methylpyridine(cas: 3510-66-5Name: 2-Bromo-5-methylpyridine)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine is very deactivated towards electrophilic substitution with respect to benzene. For this reason classical formylation, using methods such as the Gattermann or Vilsmeier reactions, are not generally successful. Name: 2-Bromo-5-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Huang, Zhiliang’s team published research in Journal of the American Chemical Society in 2021 | CAS: 1122-54-9

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is widely used in the precursor to agrochemicals and pharmaceuticals. Also, it is used as an important reagent and organic solvent.Synthetic Route of C7H7NO

Huang, Zhiliang; Guan, Renpeng; Shanmugam, Muralidharan; Bennett, Elliot L.; Robertson, Craig M.; Brookfield, Adam; McInnes, Eric J. L.; Xiao, Jianliang published their research in Journal of the American Chemical Society in 2021. The article was titled 《Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst》.Synthetic Route of C7H7NO The article contains the following contents:

The oxidative cleavage of C=C double bonds with mol. oxygen to produce carbonyl compounds is an important transformation in chem. and pharmaceutical synthesis. In nature, enzymes containing the first-row transition metals, particularly heme and non-heme iron-dependent enzymes, readily activate O2 and oxidatively cleave C=C bonds with exquisite precision under ambient conditions. The reaction remains challenging for synthetic chemists, however. There are only a small number of known synthetic metal catalysts that allow for the oxidative cleavage of alkenes at an atm. pressure of O2, with very few known to catalyze the cleavage of nonactivated alkenes. In this work, we describe a light-driven, Mn-catalyzed protocol for the selective oxidation of alkenes to carbonyls under 1 atm of O2. For the first time, aromatic as well as various nonactivated aliphatic alkenes could be oxidized to afford ketones and aldehydes under clean, mild conditions with a first row, biorelevant metal catalyst. Moreover, the protocol shows a very good functional group tolerance. Mechanistic investigation suggests that Mn-oxo species, including an asym., mixed-valent bis(μ-oxo)-Mn(III,IV) complex, are involved in the oxidation, and the solvent methanol participates in O2 activation that leads to the formation of the oxo species. In the part of experimental materials, we found many familiar compounds, such as 4-Acetylpyridine(cas: 1122-54-9Synthetic Route of C7H7NO)

4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is widely used in the precursor to agrochemicals and pharmaceuticals. Also, it is used as an important reagent and organic solvent.Synthetic Route of C7H7NO

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Zhang, Pengpeng’s team published research in Journal of the American Chemical Society in 2020 | CAS: 3510-66-5

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Recommanded Product: 2-Bromo-5-methylpyridine

《Aryl-Nickel-Catalyzed Benzylic Dehydrogenation of Electron-Deficient Heteroarenes》 was published in Journal of the American Chemical Society in 2020. These research results belong to Zhang, Pengpeng; Huang, David; Newhouse, Timothy R.. Recommanded Product: 2-Bromo-5-methylpyridine The article mentions the following:

This manuscript describes the first practical benzylic dehydrogenation of electron-deficient heteroarenes, including pyridines, pyrazines, pyrimidines, pyridazines, and triazines. This transformation allows for the efficient benzylic oxidation of heteroarenes to afford heterocyclic styrenes by the action of nickel catalysis paired with an unconventional bromothiophene oxidant. The experimental part of the paper was very detailed, including the reaction process of 2-Bromo-5-methylpyridine(cas: 3510-66-5Recommanded Product: 2-Bromo-5-methylpyridine)

2-Bromo-5-methylpyridine(cas: 3510-66-5) belongs to pyridine. Pyridine’s structure is isoelectronic with that of benzene, but its properties are quite different. Pyridine is completely miscible with water, whereas benzene is only slightly soluble. Like all hydrocarbons, benzene is neutral (in the acid–base sense), but because of its nitrogen atom, pyridine is a weak base.Recommanded Product: 2-Bromo-5-methylpyridine

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem

Reyes, Ronald L.’s team published research in Science (Washington, DC, United States) in 2020 | CAS: 1692-25-7

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. In industry and in the lab, pyridine is used as a reaction solvent, particularly when its basicity is useful, and as a starting material for synthesizing some herbicides, fungicides, and antiseptics.Electric Literature of C5H6BNO2

《Asymmetric remote C-H borylation of aliphatic amides and esters with a modular iridium catalyst》 was published in Science (Washington, DC, United States) in 2020. These research results belong to Reyes, Ronald L.; Sato, Miyu; Iwai, Tomohiro; Suzuki, Kimichi; Maeda, Satoshi; Sawamura, Masaya. Electric Literature of C5H6BNO2 The article mentions the following:

Site selectivity and stereocontrol remain major challenges in C-H bond functionalization chem., especially in linear aliphatic saturated hydrocarbon scaffolds. We report the highly enantioselective and site-selective catalytic borylation of remote C(sp3)-H bonds γ to the carbonyl group in aliphatic secondary and tertiary amides and esters. A chiral C-H activation catalyst was modularly assembled from an iridium center, a chiral monophosphite ligand, an achiral urea-pyridine receptor ligand, and pinacolatoboryl groups. Quantum chem. calculations support an enzyme-like structural cavity formed by the catalyst components, which bind the substrate through multiple noncovalent interactions. Versatile synthetic utility of the enantioenriched γ-borylcarboxylic acid derivatives was demonstrated. In the experimental materials used by the author, we found Pyridin-3-ylboronic acid(cas: 1692-25-7Electric Literature of C5H6BNO2)

Pyridin-3-ylboronic acid(cas: 1692-25-7) belongs to pyridine. In industry and in the lab, pyridine is used as a reaction solvent, particularly when its basicity is useful, and as a starting material for synthesizing some herbicides, fungicides, and antiseptics.Electric Literature of C5H6BNO2

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem