Metal-free isotactic-specific radical polymerization of N-isopropylacrylamide with pyridine N-oxide derivatives: The effect of methyl substituents of pyridine N-oxide on the isotactic specificity and the proposed mechanism for the isotactic-specific radical polymerization was written by Hirano, Tomohiro;Ishizu, Hideaki;Sato, Tsuneyuki. And the article was included in Polymer in 2008.Category: pyridine-derivatives This article mentions the following:
The radical polymerizations of N-isopropylacrylamide (NIPAAm) in chloroform at low temperatures in the presence of pyridine N-oxide (PNO) derivatives were investigated. It was found that the methylation at meta-positions of PNO improved the isotactic specificity induced by PNO, whereas the methylation at ortho-positions prevented the induction of the isotactic specificity. NMR anal. revealed that NIPAAm and PNO derivatives formed predominantly 2:1 complex through a hydrogen-bonding interaction. Furthermore, the induction of the isotactic specificity was attributed to the conformationally limited propagating radicals. Based on these findings, the mechanism of the isotactic-specific radical polymerization was discussed. In the experiment, the researchers used many compounds, for example, 3,5-Dimethylpyridine 1-oxide (cas: 3718-65-8Category: pyridine-derivatives).
3,5-Dimethylpyridine 1-oxide (cas: 3718-65-8) belongs to pyridine derivatives. Pyridine has a conjugated system of six π electrons that are delocalized over the ring. The molecule is planar and, thus, follows the Hückel criteria for aromatic systems. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Category: pyridine-derivatives