Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates was written by Hickey, David P.;Sandford, Christopher;Rhodes, Zayn;Gensch, Tobias;Fries, Lydia R.;Sigman, Matthew S.;Minteer, Shelley D.. And the article was included in Journal of the American Chemical Society in 2019.Product Details of 1257527-14-2 This article mentions the following:
Cobalt complexes have shown great promise as electrocatalysts in applications ranging from hydrogen evolution to C-H functionalization. However, the use of such complexes often requires polydentate, bulky ligands to stabilize the catalytically active Co(I) oxidation state from deleterious disproportionation reactions to enable the desired reactivity. Herein, we describe the use of bidentate electronically asym. ligands as an alternative approach to stabilizing transient Co(I) species. Using disproportionation rates of electrochem. generated Co(I) complexes as a model for stability, we measured the relative stability of complexes prepared with a series of N,N-bidentate ligands. While the stability of Co(I)Cl complexes demonstrates a correlation with exptl. measured thermodn. properties, consistent with an outer-sphere electron transfer process, the set of ligated Co(I)Br complexes evaluated was found to be preferentially stabilized by electronically asym. ligands, demonstrating an alternative disproportionation mechanism. These results allow a greater understanding of the fundamental processes involved in the disproportionation of organometallic complexes and have allowed the identification of cobalt complexes that show promise for the development of novel electrocatalytic reactions. In the experiment, the researchers used many compounds, for example, (S)-4-(tert-Butyl)-2-(4-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole (cas: 1257527-14-2Product Details of 1257527-14-2).
(S)-4-(tert-Butyl)-2-(4-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole (cas: 1257527-14-2) belongs to pyridine derivatives. The ring atoms in the pyridine molecule are sp2-hybridized. The nitrogen is involved in the 闂?bonding aromatic system using its unhybridized p orbital. The lone pair is in an sp2 orbital, projecting outward from the ring in the same plane as the 闂?bonds. Halopyridines are particularly attractive synthetic building blocks in a variety of cross-coupling methods, including the Suzuki-Miyaura cross-coupling reaction.Product Details of 1257527-14-2