Tamura, Masazumi published the artcileCeO2-catalyzed nitrile hydration to amide: reaction mechanism and active sites, Formula: C6H3FN2, the publication is Catalysis Science & Technology (2013), 3(5), 1386-1393, database is CAplus.
CeO2 acted as a reusable and effective catalyst for the hydration of various nitriles to amides in water, under neutral conditions at low temperature (30-100 °C). To identify the active site, we examined the relationship between activity and the amount of the pair site of a low-coordinated Ce site (CeLC) (oxygen defect site) and adjacent Lewis base (exposed oxygen), determined by methanol adsorption on FTIR. It is revealed that the CeLC-O site is the active site for the reaction. To clarify the reaction mechanism, we carried out in situ FTIR studies on the reaction of acetonitrile with surface Ce-OH groups and kinetic studies such as H2O/D2O kinetic isotope effect and Hammett plot. The results give the following catalytic cycle: (1) dissociation of H2O on the CeLC-O site (oxygen defect site) to give OHδ- and Hδ+ species on the site, (2) formation of an adsorption complex between nitrile and CeO2, (3) addition of OHδ- to the carbon atom of the cyano group of the complex and (4) desorption of the amide from the CeO2 surface, accompanying a regeneration of the CeLC-O site. On the basis of the above fundamental information, we found a simple method for activity increase; preheating of CeO2 at 600 °C resulted in desorption of surface carbonate, and the exposed CeLC-O site thus prepared showed one order of magnitude higher activity for the hydration of various nitriles than untreated CeO2.
Catalysis Science & Technology published new progress about 847225-56-3. 847225-56-3 belongs to pyridine-derivatives, auxiliary class Pyridine,Fluoride,Nitrile, name is 4-Fluoropicolinonitrile, and the molecular formula is C9H5ClO2, Formula: C6H3FN2.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem