Identification and characterization of a serine racemase in the silkworm Bombyx mori. was written by Tanaka, Yui;Yoshimura, Tohru;Hakamata, Maho;Saito, Chiaki;Sumitani, Megumi;Sezutsu, Hideki;Hemmi, Hisashi;Ito, Tomokazu. And the article was included in Journal of biochemistry in 2022.Recommanded Product: 54-47-7 The following contents are mentioned in the article:
The pupae of lepidopterans contain high concentrations of endogenous d-serine. In the silkworm Bombyx mori, d-serine is negligible during the larval stage but increases markedly during the pupal stage, reaching 50% of the total free serine. However, the physiological function of d-serine and the enzyme responsible for its production is unknown. Herein, we identified a new type of pyridoxal 5′-phosphate (PLP)-dependent serine racemase (SR) that catalyses the racemization of l-serine to d-serine in B. mori. This silkworm SR (BmSR) has an N-terminal PLP-binding domain that is homologous to mammalian SR and a C-terminal putative ligand-binding regulatory-like domain (ACT-like domain) that is absent in mammalian SR. Similar to mammalian SRs, BmSR catalyses the racemization and dehydration of both serine isomers. However, BmSR is different from mammalian SRs as evidenced by its insensitivity to Mg2+/Ca2+ and Mg-ATP-which are required for activation of mammalian SRs-and high d-serine dehydration activity. At the pupal stage, the SR activity was predominantly detected in the fat body, which was consistent with the timing and localization of BmSR expression. The results are an important first step in elucidating the physiological significance of d-serine in lepidopterans. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Recommanded Product: 54-47-7).
(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Recommanded Product: 54-47-7