Adding a certain compound to certain chemical reactions, such as: 109613-97-0, 2-Bromo-4-methoxypyridin-3-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, Application In Synthesis of 2-Bromo-4-methoxypyridin-3-amine, blongs to pyridine-derivatives compound. Application In Synthesis of 2-Bromo-4-methoxypyridin-3-amine
To a solution of 2-bromo-4-methoxy-pyridin-3-ylamine (540 mg, 2.66 mmol) in pyridine (20 mL) at 0 C is added ethyl chloroformate (0.38 mL, 3.99 mmol). After 30 min, more chloro formate is added (~18 mmol) is added until the reaction goes to completion. The mixture is partitioned between sat. NaHC03 and EtOAc. The two layers are separated, and the aqueous layer is extracted with EtOAc once. The combined organic layers are washed with H20 and brine, dried over MgS04, filterd, and concentrated in vacuo. The crude material is purified on silica gel with EtOAc/MeOH (100/0 to 90/10) as eluant to yield 0.54 g of the product as a white crystalline solid. 1H NMR (CDC13, 300 MHz) 8.18 (d, J= 5.6, 1H), 6.84 (d, J= 5.7, 1H), 6.02 (br s, 1H), 4.23 (q, J = 7.0, 2H), 3.92 (s, 3H), 1.31 (t, J= 7.2, 3H). LC Rt: 1.89 min; LCMS m/z 275 (M+l, 100%).
The synthetic route of 109613-97-0 has been constantly updated, and we look forward to future research findings.
Reference:
Patent; SANOFI; CHOI-SLEDESKI, Yong Mi; NIEDUZAK, Thaddeus R.; POLI, Gregory B.; SHUM, Patrick Wai-Kwok; STOKLOSA, Gregory T.; ZHAO, Zhicheng; WO2011/78984; (2011); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem