The origin of a common compound about 1003711-43-0

According to the analysis of related databases, 1003711-43-0, the application of this compound in the production field has become more and more popular.

Application of 1003711-43-0, The major producers of chemicals have been the Europe, Japan and China. Due to the growing call for a cleaner, greener environment, people will have to find innovative ways to maintain their relevance. Here is a compound 1003711-43-0, name is 2-Bromo-5-hydroxy-3-methylpyridine. This compound has unique chemical properties. The synthetic route is as follows.

To a solution of 2-oxazolemethanol (1.12 g, 11.30 mmol, Combi-Blocks Inc.) and triphenylphosphine (3.72 g, 14.18 mmol) in THF (20 mL) was added 2-bromo-5- hydroxy-3-picoline (2.27 g, 12.07 mmol, AOB Chem USA). The mixture was cooled to 0 C and 1 ,2-ethoxycarbonyl diazene (2.5 mL, 13.72 mmol) was added slowly. The solution was slowly allowed to warm to RT. After 21 h, diisopropyl azodicarboxylate (1.5 mL, 7.63 mmol) was added to the mixture. About 1.5 h later, a second batch of diisopropyl azodicarboxylate (1.5 mL, 7.63 mmol) was added. The mixture was stirred at RT for an additional 4 h and was diluted with EtOAc (50 mL). The solution was washed with NaOH (0.5 N, 10 mL), water, brine, and then dried over Na2SO4 and concentrated. The residue was purified by silica gel chromatography (10-50% EtOAc in DCM) to afford 2-(((6-bromo-5-methylpyrid in-3-yl)oxy)methyl)oxazole (3.8 g, ~80% pure) as a white solid that contained the hydrazine by-product as impurities (based on 1H-NMR). LCMS (ESI, pos.) 269.0 (M+1 )+. 1H NMR (400 MHz, CHLOROFORM-d) delta 8.02 (d, J=2.93 Hz, 1 H), 7.70 (d, J=0.78 Hz, 1 H), 7.23 (d, J=2.74 Hz, 1 H), 7.17 (s, 1 H), 5.18 (s, 2H), 2.37 (s, 3H).

According to the analysis of related databases, 1003711-43-0, the application of this compound in the production field has become more and more popular.

Reference:
Patent; AMGEN INC.; ALLEN, Jennifer R.; AMEGADZIE, Albert; BOURBEAU, Matthew P.; BROWN, James A.; CHEN, Jian J.; CHENG, Yuan; FROHN, Michael J.; GUZMAN-PEREZ, Angel; HARRINGTON, Paul E.; LIU, Longbin; LIU, Qingyian; LOW, Jonathan D.; MA, Vu Van; MANNING, James; MINATTI, Ana Elena; NGUYEN, Thomas T.; NISHMURA, Nobuko; NORMAN, Mark H.; PETTUS, Liping H.; PICKRELL, Alexander J.; QIAN, Wenyuan; RUMFELT, Shannon; RZASA, Robert M.; SIEGMUND, Aaron C.; STEC, Markian M.; WHITE, Ryan; XUE, Qiufen; (759 pag.)WO2016/22724; (2016); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem