The origin of a common compound about 75711-01-2

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,75711-01-2, its application will become more common.

Adding a certain compound to certain chemical reactions, such as: 75711-01-2, 6-Chloro-5-methoxypyridin-3-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound, 75711-01-2, blongs to pyridine-derivatives compound. Safety of 6-Chloro-5-methoxypyridin-3-amine

To an ice-cooled suspension of 6-chloro-5-(methyloxy)-3-pyridinamine D46 (2.14 g, 13.50 mmol) in HCl 4 M in water (10.12 ml, 40.50 mmol), a solution of sodium nitrite (1.02 g, 14.84 mmol) in water (7 ml) was added dropwise over a 5 min period and the resulting mixture was vigorously stirred at 5 C. for 30 min. To the mixture at 5 C. was added a solution of NaBF4 (2.67 g, 24.29 mmol) in water (17 ml). The thick suspension was collected by filtration, washed with cold water and a little amount of cold EtOH and dried under reduced pressure at 55 C. for 8 h. The resulting black solid was taken-up in xylenes (25 ml) and allowed to reflux for 1 h. The solvent was evaporated under reduced pressure, the residue dissolved in EtOAc and washed with a saturated NaHCO3 aqueous solution. The organic phase was separated, dried (Na2SO4), filtered and the solvent removed under vacuum. The resulting black oil was purified by flash chromatography on silica gel (Biotage SP4 25M, Cy/EtOAc 95/5) to afford the title compound D47 (0.11 g, 0.69 mmol, 5% yield) as a pale yellow solid. 1H NMR (400 MHz, DMSO-d6) delta (ppm): 8.03 (d, 1H), 7.70 (dd, 1H), 3.92 (s, 3H).

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route,75711-01-2, its application will become more common.

Reference:
Patent; ALVARO, GIUSEPPE; AMANTINI, DAVID; BELVEDERE, SANDRO; US2009/22670; (2009); A1;,
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem