In 2018,Tolmachova, Kateryna A.; Moroz, Yurii S.; Konovets, Angelika; Platonov, Maxim O.; Vasylchenko, Oleksandr V.; Borysko, Petro; Zozulya, Sergey; Gryniukova, Anastasia; Bogolubsky, Andrey V.; Pipko, Sergey; Mykhailiuk, Pavel K.; Brovarets, Volodymyr S.; Grygorenko, Oleksandr O. published 《(Chlorosulfonyl)benzenesulfonyl Fluorides-Versatile Building Blocks for Combinatorial Chemistry: Design, Synthesis and Evaluation of a Covalent Inhibitor Library》.ACS Combinatorial Science published the findings.Electric Literature of C5H5BrN2 The information in the text is summarized as follows:
Multigram synthesis of (chlorosulfonyl)benzenesulfonyl fluorides is described. Selective modification of these building blocks at the sulfonyl chloride function under parallel synthesis conditions is achieved. It is shown that the reaction scope includes the use of (hetero)aromatic and electron-poor aliphatic amines (e.g., amino nitriles). Utility of the method is demonstrated by preparation of the sulfonyl fluoride library for potential use as covalent fragments, which is demonstrated by a combination of in silico and in vitro screening against trypsin as a model enzyme. As a result, several inhibitors were identified with activity on par with that of the known inhibitor. In the part of experimental materials, we found many familiar compounds, such as 6-Bromopyridin-3-amine(cas: 13534-97-9Electric Literature of C5H5BrN2)
6-Bromopyridin-3-amine(cas: 13534-97-9) belongs to anime.Typically the presence of an amine functional group is deduced by a combination of techniques, including mass spectrometry as well as NMR and IR spectroscopies. 1H NMR signals for amines disappear upon treatment of the sample with D2O. In their infrared spectrum primary amines exhibit two N-H bands, whereas secondary amines exhibit only one.Electric Literature of C5H5BrN2