Related Products of 120202-71-3, As an important bridge between the micro and macro material world, chemistry is one of the main methods and means for humans to understand and transform the material world. 120202-71-3, Name is (R)-Methyl 2-(2-chlorophenyl)-2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)acetate sulfate, SMILES is O=C(OC)[C@@H](C1=CC=CC=C1Cl)N2CCC3=C(C=CS3)C2.O=S(O)(O)=O, belongs to pyridine-derivatives compound. In a article, author is Pan, Hongbing, introduce new discover of the category.
Hierarchical nanostructures of a liquid crystalline block copolymer with a hydrogen-bonded calamitic mesogen
With a pyridine derivative containing a calamitic mesogen 4-((6-((4′-((4-hexylphenyl)ethynyl)-[1,1′-biphenyl]-4-yl)oxy)hexyl)oxy)pyridine (HEBC6) used as the hydrogen-bonding acceptor and polydimethylsiloxane-b-poly (2,5-bis(4-carboxy phenyl)styrene) (PDMS-b-PM3H) as the hydrogen-bonding donor, a series of supramolecular liquid crystalline block copolymers (SLCBCPs) were prepared through hydrogen bonding. In the supramolecular block, the calamitic mesogen was decoupled from the motion of PM3H chains by using a flexible spacer. Different microphase-separated nanostructures and liquid crystalline (LC) structures were obtained by varying the degree of polymerization of the PM3H block and the molar ratio of HEBC6 to PDMS-b-PM3H. The SLCBCPs can self-assemble into hexagonally packed cylinders (HEX), lamellae (LAM), and inverted HEX. Smectic A phase and parallel packing of the calamitic mesogens were also observed on a smaller length scale, and these two ordered structures are synergistic and promotional. Therefore, hierarchically ordered structures can be obtained from these SLCBCPs.
Related Products of 120202-71-3, One of the oldest and most widely used commercial enzyme inhibitors is aspirin, which selectively inhibits one of the enzymes involved in the synthesis of molecules that trigger inflammation. you can also check out more blogs about 120202-71-3.
Reference:
Pyridine – Wikipedia,
,Pyridine | C5H5N – PubChem