Powerful peracetic acid-ionic liquid pretreatment process for the efficient chemical hydrolysis of lignocellulosic biomass was written by Uju;Goto, Masahiro;Kamiya, Noriho. And the article was included in Bioresource Technology in 2016.Category: pyridine-derivatives This article mentions the following:
The aim of this work was to design a new method for the efficient saccharification of lignocellulosic biomass (LB) using a combination of peracetic acid (PAA) pretreatment with ionic liquid (IL)-HCl hydrolysis. The pretreatment of LBs with PAA disrupted the lignin fractions, enhanced the dissolution of LB and led to a significant increase in the initial rate of the IL-HCl hydrolysis. The pretreatment of Bagasse with PAA prior to its 1-butyl-3-methylimidazolium chloride ([Bmim][Cl])-HCl hydrolysis, led to an improvement in the cellulose conversion from 20% to 70% in 1.5 h. Interestingly, the 1-butyl-3-methylpyridium chloride ([Bmpy][Cl])-HCl hydrolysis of Bagasse gave a cellulose conversion greater than 80%, with or without the PAA pretreatment. For LB derived from seaweed waste, the cellulose conversion reached 98% in 1 h. The strong hydrolysis power of [Bmpy][Cl] was attributed to its ability to transform cellulose I to II, and lowering the d.p. of cellulose. In the experiment, the researchers used many compounds, for example, 1-Butyl-3-methylpyridinium Chloride (cas: 125652-55-3Category: pyridine-derivatives).
1-Butyl-3-methylpyridinium Chloride (cas: 125652-55-3) belongs to pyridine derivatives. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Category: pyridine-derivatives