Correlation between lipophilicity of newly synthesized ionic liquids and selected Fusarium genus growth rate was written by Vranes, Milan;Tot, Aleksandar;Cosic, Jasenka;Papovic, Snezana;Panic, Jovana;Gadzuric, Slobodan;Jankovic, Nenad;Vrandecic, Karolina. And the article was included in RSC Advances in 2019.Synthetic Route of C10H16BrN This article mentions the following:
The purpose of the present study was to examine the effectiveness of 23 different synthesized ionic liquids (ILs) on Fusarium culmorum and Fusarium oxysporum growth rate. The strategy of IL synthesis was a structural modification of ionic liquids through changing the polarity of imidazolium and pycolinium cations and replacing halide anions with well known antifungal anions (cinnamate, caffeate and mandelate). The findings clearly suggest that the type of alkyl chain on the cation is the most determining factor for IL toxicity. In order to examine how IL structure affects their toxicity towards Fusarium genus, lipophilic descriptor A log P is calculated from d. functional theory and correlated with Fusarium growth rate. All these results demonstrate the high level of the interdependency of lipophilicity and toxicity for investigated ILs towards the Fusarium genus. The data collected in this research suggest that the inhibitory influence of ILs is more pronounced in the case of F. oxysporum. In the experiment, the researchers used many compounds, for example, 1-Butyl-4-methylpyridin-1-ium bromide (cas: 65350-59-6Synthetic Route of C10H16BrN).
1-Butyl-4-methylpyridin-1-ium bromide (cas: 65350-59-6) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Synthetic Route of C10H16BrN