Decarboxylation of orotic acid analogues: Comparison of solution and gas-phase reactivity was written by Wong, Amy;Vikse, Krista;Wu, Weiming. And the article was included in Tetrahedron Letters in 2020.Recommanded Product: 59864-31-2 This article mentions the following:
The decarboxylation of orotic acid and analogs have been investigated as a model for enzymic decarboxylation catalyzed by orotidine-5′-monophosphate decarboxylase (ODCase). The rate of decarboxylation of 1-methyl-4-pyridone-2-carboxylic acid in solution has been reported to be three orders of magnitude greater than those of 1,3-dimethylorotic acid and 1-methyl-2-pyridone-6-carboxylic acid in solution Here, the gas-phase decarboxylation of the three corresponding carboxylates were investigated. The carboxylate of 1,3-dimethylorotic acid decarboxylates at a faster rate and thus the relative rates of decarboxylation are different from those observed in solution The relative rates of decarboxylation correlate well with the stability of the corresponding carbanions and the calculated activation energies for gas-phase decarboxylation. Therefore, the reactions in the gas phase seem to go through the direct decarboxylation mechanism whereas the reactions in solution likely go through zwitterionic intermediates as previously proposed. In the experiment, the researchers used many compounds, for example, 1-Methyl-6-oxo-1,6-dihydropyridine-2-carboxylic acid (cas: 59864-31-2Recommanded Product: 59864-31-2).
1-Methyl-6-oxo-1,6-dihydropyridine-2-carboxylic acid (cas: 59864-31-2) belongs to pyridine derivatives. Pyridines are an important class of heterocycles and occur in polysubstituted forms in many naturally occurring biologically active compounds, drug molecules and chiral ligands. One of the examples of pyridines is the well-known alkaloid lithoprimidine, which is an A3 adenosine receptor antagonist and N,N-dimethylaminopyridine (DMAP) analog, commonly used in organic synthesis.Recommanded Product: 59864-31-2