Xie, Chao; Lin, Longfei; Huang, Liang; Wang, Zixin; Jiang, Zhiwei; Zhang, Zehui; Han, Buxing published an article in 2021. The article was titled 《Zn-Nx sites on N-doped carbon for aerobic oxidative cleavage and esterification of C(CO)-C bonds》, and you may find the article in Nature Communications.Name: 4-Acetylpyridine The information in the text is summarized as follows:
Zn/NC-X catalysts, in which Zn2+ coordinated with N species on microporous N-doped carbon (NC) and X denoted the pyrolysis temperature, could effectively catalyze aerobic oxidative cleavage of C(CO)-C bonds and quant. converted acetophenone to Me benzoate with a yield of 99% at 100°C was reported. The Zn/NC-950 could be applied for a wide scope of acetophenone derivatives as well as more challenging alkyl ketones. Detail mechanistic investigations revealed that the catalytic performance of Zn/NC-950 could be attributed to the coordination between Zn2+ and N species to change the electronic state of the metal, synergetic effect of the Zn single sites with their surrounding N atoms, as well as the microporous structure with the high surface area and structural defects of the NC. In addition to this study using 4-Acetylpyridine, there are many other studies that have used 4-Acetylpyridine(cas: 1122-54-9Name: 4-Acetylpyridine) was used in this study.
4-Acetylpyridine(cas: 1122-54-9) belongs to pyridine. Pyridine is a relatively complex molecule and exhibits a number of different bands in IR spectra. Among others, the bands characterizing the ν8a and ν19b modes have been found to be sensitive to the coordination or protonation of the molecule. Note that the band that is diagnostic for the PyH+ ion at about 1545 cm− 1 (ν19b mode) does not overlap with any of the other bands.Name: 4-Acetylpyridine