Yamada, Makiko’s team published research in Drug Metabolism & Disposition in 2020-04-30 | CAS: 72509-76-3

Drug Metabolism & Disposition published new progress about Drug interactions. 72509-76-3 belongs to class pyridine-derivatives, name is 3-Ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C18H19Cl2NO4, Formula: C18H19Cl2NO4.

Yamada, Makiko published the artcileCritical impact of drug-drug interactions via intestinal CYP3A in the risk assessment of weak perpetrators using physiologically based pharmacokinetic models, Formula: C18H19Cl2NO4, the main research area is drug interaction intestinal CYP3A physiol pharmacokinetic model.

A great deal of effort has been being made to improve the accuracy of the prediction of drug-drug interactions (DDIs). In this study, we addressed CYP3A-mediated weak DDIs, in which a relatively high false prediction rate was pointed out. We selected 17 orally administered drugs that have been reported to alter area under the curve (AUC) of midazolam, a typical CYP3A substrate, 0.84-1.47 times. For weak CYP3A perpetrators, the predicted AUC ratio mainly depends on intestinal DDIs rather than hepatic DDIs because the drug concentration in the enterocytes is higher. Thus, DDI prediction using simulated concentration-time profiles in each segment of the digestive tract was made by physiol. based pharmacokinetic (PBPK) modeling software GastroPlus. Although mechanistic static models tend to overestimate the risk to ensure the safety of patients, some underestimation is reported about PBPK modeling. Our in vitro studies revealed that 16 out of 17 tested drugs exhibited time-dependent inhibition (TDI) of CYP3A, and the subsequent DDI simulation that ignored these TDIs provided false-neg. results. This is considered to be the cause of past underestimation. Inclusion of the DDI parameters of all the known DDI mechanisms, reversible inhibition, TDI, and induction, which have opposite effects on midazolam AUC, to PBPK model was successful in improving predictability of the DDI without increasing false-neg. prediction as trade-off. This comprehensive model-based anal. suggests the importance of the intestine in assessing weak DDIs via CYP3A and the usefulness of PBPK in predicting intestinal DDIs. Although drug-drug interaction (DDI) prediction has been extensively performed previously, the accuracy of prediction for weak interactions via CYP3A has not been thoroughly investigated. In this study, we simulate DDIs considering drug concentration-time profile in the enterocytes and discuss the importance and the predictability of intestinal DDIs about weak CYP3A perpetrators.

Drug Metabolism & Disposition published new progress about Drug interactions. 72509-76-3 belongs to class pyridine-derivatives, name is 3-Ethyl 5-methyl 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C18H19Cl2NO4, Formula: C18H19Cl2NO4.

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem