Yao, Jinzhong et al. published their research in Advanced Synthesis & Catalysis in 2013 | CAS: 4783-68-0

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Product Details of 4783-68-0

Palladium-Catalyzed Decarboxylative Coupling of 伪- Oxocarboxylic Acids with C(sp2)-H of 2-Aryloxypyridines was written by Yao, Jinzhong;Feng, Ruokun;Wu, Zaihong;Liu, Zhanxiang;Zhang, Yuhong. And the article was included in Advanced Synthesis & Catalysis in 2013.Product Details of 4783-68-0 This article mentions the following:

An efficient palladium-catalyzed decarboxylative ortho-acylation of 2-aryloxypyridines with 伪-oxocarboxylic acids is described. In this new transformation, the aromatic C(sp2)-H bond was successfully acylated to give diverse aromatic ketones regioselectively in moderate to good yields. The pyridine group can be removed easily after the acylation to give the corresponding 2-hydroxy aromatic ketones. In the experiment, the researchers used many compounds, for example, 2-Phenoxypyridine (cas: 4783-68-0Product Details of 4783-68-0).

2-Phenoxypyridine (cas: 4783-68-0) belongs to pyridine derivatives. In contrast to benzene, Pyridine’s electron density is not evenly distributed over the ring, reflecting the negative inductive effect of the nitrogen atom. Several pyridine derivatives play important roles in biological systems. While its biosynthesis is not fully understood, nicotinic acid (vitamin B3) occurs in some bacteria, fungi, and mammals.Product Details of 4783-68-0

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem