Yu, Weiqun published the artcileReviving Cav1.2 as an attractive drug target to treat bladder dysfunction, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, the publication is FASEB Journal (2022), 36(1), e22118, database is CAplus and MEDLINE.
A review. Inhibition of bladder contraction with antimuscarinics is a common approach to treat bladder hyperactivity, and the L-type voltage-gated calcium channel α1C (Cav1.2) is crucial for bladder contractility. Therefore, strategies aimed at inhibiting Cav1.2 appear warranted. However, multiple clin. trials that attempted to treat bladder overactivity with calcium channel blockers (CCBs) have been unsuccessful, creating an unsolved mystery. In contrast, cardiologists and epidemiologists have reported strong associations between CCB use and bladder hyperactivity, opposing expectations of urologists. Recent findings from our lab offer a potential explanation. We have demonstrated that ketamine which can cause cystitis, functions, like nifedipine, as a Cav1.2 antagonist. We also show that a Cav1.2 agonist which potentiates muscle contraction, rather than antagonizing it, can increase the volume of voids and reduce voiding frequency. This perspective will discuss in detail the unsuccessful urol. trials of CCBs and the promise of Cav1.2 agonists as potential novel therapies for bladder dysfunctions.
FASEB Journal published new progress about 21829-25-4. 21829-25-4 belongs to pyridine-derivatives, auxiliary class Membrane Transporter/Ion Channel,Calcium Channel, name is Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, and the molecular formula is C16H20N2, Name: Dimethyl 2,6-dimethyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate.
Referemce:
https://en.wikipedia.org/wiki/Pyridine,
Pyridine | C5H5N – PubChem