Effects of chlorpyrifos on the metabolic profiling of Bacillus megaterium strain RRB was written by Zhang, Mingxia;Li, Yong;Mu, Qi’e;Feng, Fayun;Yu, Xiangyang;Ge, Jing;Zhang, Yun;Nie, Jinfang. And the article was included in Chemosphere in 2022.Related Products of 54-47-7 The following contents are mentioned in the article:
Many microorganisms have been reported to degrade organic pollutants in the environment and plants, however, the specific information about the effect of organic pollutants on the metabolism of microorganisms is poorly investigated. In the present study, the effect of the pesticide chlorpyrifos on the metabolic profiling of Bacillus megaterium strain RRB was investigated using metabolomics. Our data show that chlorpyrifos acting as an energy source was readily concentrated in the strain RRB from the culture medium. During early cultivation, the shift in energy sources from tryptic soy broth to chlorpyrifos may temporarily cause the strain RRB to enter the starvation stage, where some synthesis-related amino acids and intermediates in the pathways of TCA cycle and pyridoxine metabolism were decreased. The increase of nucleotides and lysine may help the strain RRB cope with the starvation stage. During later cultivation, many metabolites including organic acids, nucleosides and sugar phosphates were gradually accumulated, which indicates that chlorpyrifos could be utilized by the stain RRB to generate metabolites bacteria needed. In addition, arginine acting as a nitrogen-storage amino acid was gradually decreased with later cultivation, suggesting that chlorpyrifos could not provide enough nitrogen for bacteria. This study involved multiple reactions and reactants, such as (4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7Related Products of 54-47-7).
(4-Formyl-5-hydroxy-6-methylpyridin-3-yl)methyl dihydrogen phosphate (cas: 54-47-7) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Pyridine derivatives are also useful as small-molecule 伪-helix mimetics that inhibit protein-protein interactions, as well as functionally selective GABA ligands.Related Products of 54-47-7