Discovery of thiosemicarbazone derivatives as effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates was written by Zhao, Bing;Zhang, Xinhui;Yu, Tingting;Liu, Ying;Zhang, Xiaoling;Yao, Yongfang;Feng, Xuejian;Liu, Hongmin;Yu, Dequan;Ma, Liying;Qin, Shangshang. And the article was included in Acta Pharmaceutica Sinica B in 2021.Recommanded Product: Phenyl(pyridin-2-yl)methanone This article mentions the following:
In this study, structure-activity relationship based on thiosemicarbazone derivatives (E)-R1C(S)NHN=C(R2)(R3) (I) (R1 = phenylamino, Ph, cyclohexylamino, morpholin-4-yl, etc.; R2 = H, Me; R3 = Ph, pyridin-2-yl, 3,4,5-trimethoxyphenyl, etc.) was systematically characterized and their potential activities combined with meropenem (MEM) were evaluated. Compounds (I).HCl [R1 = piperazin-1-yl, R2 = H, R3 = 2-hydroxyphenyl (II); R1 = 4-methylpiperazin-1-yl, R2 = H, R3 = 2-hydroxyphenyl (III)] exhibited excellent activity against 10 NDM-pos. isolate clin. isolates in reversing MEM resistance. Further studies demonstrated that compounds II and III were uncompetitive NDM-1 inhibitors with Ki = 0.63 and 0.44μmol/L, resp. Mol. docking speculated that compounds II and III were most likely to bind in the allosteric pocket which would affect the catalytic effect of NDM-1 on the substrate meropenem. Toxicity evaluation experiment showed that no hemolysis activities were found even at concentrations of 1000 mg/mL against red blood cells. In vivo exptl. results showed that a combination of MEM and compound III was markedly effective in treating infections caused by NDM-1 pos. strain and prolonging the survival time of sepsis mice. The finding showed that compound III might be a promising lead in developing new inhibitor to treat NDM-1 producing superbug. In the experiment, the researchers used many compounds, for example, Phenyl(pyridin-2-yl)methanone (cas: 91-02-1Recommanded Product: Phenyl(pyridin-2-yl)methanone).
Phenyl(pyridin-2-yl)methanone (cas: 91-02-1) belongs to pyridine derivatives. Pyridine is diamagnetic and has a diamagnetic susceptibility of −48.7 × 10−6 cm3·mol−1.The molecular electric dipole moment is 2.2 debyes. The standard enthalpy of formation is 100.2 kJ·mol−1 in the liquid phase and 140.4 kJ·mol−1 in the gas phase. Pyridine groups exist in countless molecules, and their applications include catalysis, drug design, molecular recognition, and natural product synthesis.Recommanded Product: Phenyl(pyridin-2-yl)methanone