Zhou, Min et al. published their research in Angewandte Chemie, International Edition in 2020 | CAS: 644-98-4

2-Isopropylpyridine (cas: 644-98-4) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Synthetic Route of C8H11N

Sulfur(IV)-Mediated Unsymmetrical Heterocycle Cross-Couplings was written by Zhou, Min;Tsien, Jet;Qin, Tian. And the article was included in Angewandte Chemie, International Edition in 2020.Synthetic Route of C8H11N This article mentions the following:

Despite the tremendous utilities of metal-mediated cross-couplings in modern organic chem., coupling reactions involving nitrogenous heteroarenes remain a challenging undertaking – coordination of Lewis basic atoms into metal centers often necessitate elevated temperature, high catalyst loading, etc. Herein, the authors report a sulfur (IV) mediated cross-coupling amendable for the efficient synthesis of heteroaromatic substrates. Addition of heteroaryl nucleophiles to a simple, readily-accessible alkyl sulfinyl (IV) chloride gave a trigonal bipyramidal sulfurane intermediate. Reductive elimination therefrom provides bis-heteroaryl products in a practical and efficient fashion. In the experiment, the researchers used many compounds, for example, 2-Isopropylpyridine (cas: 644-98-4Synthetic Route of C8H11N).

2-Isopropylpyridine (cas: 644-98-4) belongs to pyridine derivatives. Pyridine’s the lone pair does not contribute to the aromatic system but importantly influences the chemical properties of pyridine, as it easily supports bond formation via an electrophilic attack. Reduced pyridines, namely tetrahydropyridines, dihydropyridines and piperidines, are found in numerous natural and synthetic compounds. The synthesis and reactivity of these compounds have often been driven by the fact many of these compounds have interesting and unique pharmacological properties. Synthetic Route of C8H11N

Referemce:
Pyridine – Wikipedia,
Pyridine | C5H5N – PubChem